- Fan, H.-F. (1991). SAPI91. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lehn, J.-M., Mascal, M., Decian, A. & Fischer, J. (1990). J. Chem. Soc. Chem. Commun. pp. 479-481.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Schotten, C. (1884). Ber. Dtsch. Chem. Ges. 17, 2544-2547.
- Shibakami, M. & Sekiya, A. (1992). J. Chem. Soc. Chem. Commun. pp. 1742-1743.

Acta Cryst. (1994). C50, 594-597

# Cycloaddition Products of Tricyclo-[6.2.1.0<sup>2,7</sup>]undeca-2(7),4,9-triene-3,6-dione

VASANTHA PATTABHI† AND S. BANUMATHI

Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600025, India

GOVERDHAN MEHTA AND S. PADMA

School of Chemistry, University of Hyderabad, Hyderabad 00134, India

(Received 26 February 1993; accepted 22 July 1993)

## Abstract

The crystal structures of *endo,anti,syn*-heptacyclo[10.6.1.1<sup>5,8</sup>.1<sup>14,17</sup>.0<sup>2,11</sup>.0<sup>4,9</sup>.0<sup>13,18</sup>]henicosa-4(9),-6,13(18),15-tetraene-3,10-dione,  $C_{21}H_{18}O_2$  (I), and *exo,syn,syn*-hexacyclo[10.4.2.1<sup>5,8</sup>.0<sup>2,11</sup>.0<sup>4,9</sup>.0<sup>13,16</sup>]nonadeca-4(9),6,14,17-tetraene-3,10-dione,  $C_{19}H_{16}O_2$  (II), are reported. The packing of the molecules in both structures is stabilized by van der Waal's forces.

### Comment

Stereoelectronic effects which influence the stereochemical outcome of the Diels-Alder reaction have been investigated extensively in recent years. In this context, facially perturbed diene or dienophile constituents are particularly incisive probes for evaluating the relative contributions of steric and electronic factors. While cycloadditions to facially perturbed dienes have been explored widely, the complementary response of facially perturbed dienophiles in Diels-Alder cycloadditions has not

 $\square$  1994 International Union of Crystallography Printed in Great Britain – all rights reserved received matching attention. As part of a detailed investigation (Mehta, Padma, Pattabhi, Pramanik & Chandrasekhar, 1990), we have studied the cycloaddition of several dienes to the novel dienophile tricyclo[ $6.2.1.0^{2.7}$ ]undeca-2(7),4,9-triene-3,6-dione (1) (Cookson, Hill & Hudec, 1964; Mehta *et al.*, 1989), whose two faces are distinguishable by the presence of methano and etheno bridges, respectively. It was essential to establish unambiguously the stereochemistry of the cycloaddition products of (1); here we describe the molecular structure of the products (I) and (II), obtained by cycloadditions of tricyclo[ $5.2.1.0^{2.16}$ ]deca-2,5,8-triene (2) and cyclooctate-traene (3), respectively.



The average e.s.d.'s for the bond lengths and angles are 0.006 Å and  $0.4^{\circ}$ , respectively, in (I), and 0.003 Å and  $0.2^{\circ}$ , respectively, in (II). The bond lengths and angles in the two structures are comparable and normal. C(3)—C(4) and C(15)—C(16) in (I) and C(3)—C(4) and C(11)—C(12) in (II) exhibit partial double-bond character. The C(5)—C(6) bond in both compounds is significantly elongated, which may be due to overcrowding of the atoms at C(6).

<sup>†</sup> DCB contribution No. 821.



Fig. 1. View of the molecules of (I) and (II), showing the crystallographic numbering scheme.



Fig. 2. Superposition of molecules of (I) and (II).

# **Experimental** Compound (I)

Crystal data

 $C_{21}H_{18}O_2$  $M_r = 302.37$ Orthorhombic  $P2_{1}2_{1}2_{1}$ a = 7.925 (1) Å *b* = 9.281 (2) Å c = 20.918 (3) Å V = 1538.6 (4) Å<sup>3</sup> Z = 4 $D_x = 1.31 \text{ Mg m}^{-3}$ 

#### Data collection

Enraf-Nonius CAD-4 diffractometer  $\omega$ -2 $\theta$  scans Absorption correction: empirical  $T_{\rm min} = 0.73, T_{\rm max} = 0.96$ 1752 measured reflections 1701 independent reflections 1567 observed reflections  $[l > 2.5\sigma(l)]$ 

#### Refinement

Refinement on F R = 0.068wR = 0.099S = 3.251567 reflections 280 parameters All H-atom parameters refined  $w = 4(F_o^2)/\sigma^2(F_o^2)$ where  $\sigma(F_o^2) =$  $[\sigma^2(I) + (0.05I)^2]^{1/2}/Lp$  $(\Delta/\sigma)_{\rm max}$  = 0.03

Cu K $\alpha$  radiation  $\lambda = 1.5418 \text{ Å}$ Cell parameters from 25 reflections  $\theta = 20 - 30^{\circ}$  $\mu = 0.62 \text{ mm}^{-1}$ T = 293 KRhombus  $0.40 \times 0.40 \times 0.22$  mm Greenish yellow

 $R_{\rm int} = 0.03$  $\theta_{\rm max}$  = 70°  $h = 0 \rightarrow 9$  $k = 0 \rightarrow 11$  $l = 0 \rightarrow 25$ 3 standard reflections frequency: 120 min intensity variation: <2.8% (linear correction factors 1.000-1.014)

 $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: Zachariasen (1963) Extinction coefficient:  $1.35 \times 10^{-5}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)



|     | Be         | $x_q = (4/3) \sum_i \sum_j \beta_i$ | ij <b>a</b> i. <b>a</b> j. |                 |
|-----|------------|-------------------------------------|----------------------------|-----------------|
|     | x          | у                                   | z                          | B <sub>eq</sub> |
| O22 | 0.9009 (4) | 0.5150 (4)                          | 0.5348 (2)                 | 6.83 (7)        |
| O23 | 0.4831 (5) | 0.3618 (4)                          | 0.7280(1)                  | 6.55 (7)        |
| Cl  | 0.4120 (6) | 0.6259 (5)                          | 0.5362 (2)                 | 5.56 (9)        |
| C2  | 0.5775 (6) | 0.6829 (4)                          | 0.5634 (2)                 | 4.93 (8)        |
| C3  | 0.6589 (5) | 0.5545 (4)                          | 0.5963 (2)                 | 3.88 (6)        |
| C4  | 0.8086 (5) | 0.4740 (4)                          | 0.5782 (2)                 | 4.27 (7)        |
| C5  | 0.8509 (4) | 0.3379 (4)                          | 0.6161 (2)                 | 3.69 (6)        |
| C6  | 0.8392 (6) | 0.2039 (4)                          | 0.5701 (2)                 | 4.55 (8)        |
| C7  | 0.9212 (5) | 0.0816 (4)                          | 0.6051 (2)                 | 4.15 (7)        |
| C8  | 1.0967 (6) | 0.0285 (5)                          | 0.6212 (2)                 | 5.06 (8)        |
| C9  | 1.1530 (6) | 0.1120 (6)                          | 0.6817 (3)                 | 6.1 (1)         |
| C10 | 1.0539 (6) | 0.0756 (5)                          | 0.7287 (2)                 | 5.60 (9)        |
| C11 | 0.9248 (6) | -0.0351 (4)                         | 0.7027 (2)                 | 4.50 (8)        |
| C12 | 0.8206 (5) | 0.0448 (4)                          | 0.6539 (2)                 | 3.91 (7)        |
| C13 | 0.6669 (5) | 0.1403 (4)                          | 0.6523 (2)                 | 4.03 (7)        |
| C14 | 0.7333 (4) | 0.2945 (4)                          | 0.6715 (2)                 | 3.33 (6)        |
| C15 | 0.5838 (5) | 0.3917 (4)                          | 0.6863 (2)                 | 3.74 (6)        |
| C16 | 0.5594 (4) | 0.5190 (4)                          | 0.6462 (2)                 | 3.44 (6)        |
| C17 | 0.4116 (5) | 0.6240 (4)                          | 0.6464 (2)                 | 4.16 (7)        |
| C18 | 0.3129 (6) | 0.5936 (5)                          | 0.5852 (3)                 | 5.55 (9)        |

## C21H18O2 AND C19H16O2

| C19 (                                     | 0.5070 (6)  | 0.7605     | 5(4) 0.6244 (2<br>) (5) 0.5795 (2  | 2) 4.86 (8)<br>2) 5 14 (8)    | Refine   | ment                     |                        |                         |                                            |                                   |
|-------------------------------------------|-------------|------------|------------------------------------|-------------------------------|----------|--------------------------|------------------------|-------------------------|--------------------------------------------|-----------------------------------|
| C21 1                                     | 1.0450 (6)  | -0.1146    | 5(5) 0.6546 (2                     | 2) 5.20 (9)                   | Refine   | ment on F                |                        | w =                     | $4(F_o^2)/\sigma^2(F_o^2)$                 |                                   |
|                                           | <b>a</b> 1  |            |                                    |                               | R = 0.   | 064                      |                        | wl                      | here $\sigma(F_o^2) =$                     |                                   |
| Table 2.                                  | Selected    | d geometr  | ic parameters (                    | $\mathbf{A}, \circ$ ) for (1) | wR = 0   | 0.063                    |                        | [σ                      | $r^{2}(I) + (0.05I)^{2}$                   | ] <sup>1/2</sup> /Lp              |
| O22—C4                                    |             | 1.226 (5)  | C8—C9                              | 1.550 (7)                     | S = 2.0  | 6                        |                        | $(\Delta/c$             | $\sigma$ ) <sub>max</sub> = 0.07           |                                   |
| O23C15                                    |             | 1.216 (5)  | C8-C21                             | 1.556 (6)                     | 2143 r   | eflections               |                        | $\Delta \rho_{\rm m}$   | <sub>ax</sub> = 0.32 e Å                   | -3                                |
| C1-C2                                     |             | 1.524 (7)  | C9-C10                             | 1.303 (7)                     | 254 pa   | rameters                 |                        | $\Delta \rho_{\rm m}$   | $_{in} = -0.32 e$                          | Å <sup>-3</sup>                   |
| $C^2 - C^3$                               |             | 1.520 (5)  | C10-C12                            | 1.508 (6)                     | All Ĥ-   | atom parameter           | ers                    | Aton                    | nic scattering                             | factors                           |
| C2-C19                                    |             | 1.568 (6)  | C11-C21                            | 1.569 (6)                     | refir    | ned                      |                        | fre                     | om Internation                             | nal Tables                        |
| C3—C4                                     |             | 1.452 (5)  | C12-C13                            | 1.507 (5)                     |          |                          |                        | fo                      | r X-ray Cryst                              | allography                        |
| C3-C16                                    |             | 1.350 (5)  | C13—C14                            | 1.577 (5)                     |          |                          |                        | (1                      | 974, Vol. IV)                              | ••••                              |
| C4-C3                                     |             | 1.528 (5)  | C13 - C20<br>C14 - C15             | 1.540 (6)                     |          |                          |                        | •                       |                                            |                                   |
| C5-C14                                    |             | 1.542 (5)  | C15-C16                            | 1.461 (5)                     | Table    | 3. Fraction              | al atomic              | coord                   | dinates and                                | equivalent                        |
| C6—C7                                     |             | 1.499 (5)  | C16-C17                            | 1.524 (5)                     | i        | sotropic disp            | lacement               | naran                   | neters (Ų) fa                              | n ID                              |
| C6-C20                                    |             | 1.550 (6)  | C17—C18                            | 1.526 (6)                     |          | sonopie alsp             | <i>weennenn</i>        | purun                   |                                            | ,, (11)                           |
| $C_{7} = C_{8}$                           |             | 1.514(0)   | UI/UI9                             | 1.540 (0)                     |          | L.                       | $B_{\rm eq} = (4/3)^2$ | $\sum_i \sum_j \beta_i$ | $\mathbf{j}\mathbf{a}_{i}\mathbf{.a}_{j}.$ |                                   |
|                                           |             | 107 5 (4)  | C10 C11 C21                        | 07 8 (3)                      |          | x                        | у                      |                         | z                                          | Bea                               |
| $C_2 = C_1 = C_{10}$<br>$C_1 = C_2 = C_3$ |             | 107.3 (4)  | C10 = C11 = C21<br>C12 = C11 = C21 | 97.8 (3)                      | O20      | 0.1458 (3)               | 0.185                  | 18 (5)                  | 1.3004 (2)                                 | 5.48 (3)                          |
| C1-C2-C19                                 |             | 99.0 (3)   | C7-C12-C11                         | 108.4 (3)                     | 021      | 0.1707 (3)               | 0.0548                 | 38 (5)                  | 0.8013 (2)                                 | 4.88 (2)                          |
| C3-C2-C19                                 |             | 98.2 (3)   | C7-C12-C13                         | 108.3 (3)                     | CI       | 0.4871 (3)               | 0.0679                 | 78 (8)<br>24 (7)        | 1.3701 (2)                                 | 4.64 (3)                          |
| C2-C3-C4                                  |             | 129.2 (3)  | C11-C12-C13                        | 138.3 (3)                     | C2<br>C3 | 0.1815 (2)               | 0.0822                 | 70 (5)                  | 1.3647(2)<br>1 2164(2)                     | 3 27 (2)                          |
| $C_2 - C_3 - C_{16}$                      |             | 107.1 (3)  | C12-C13-C14                        | 105.0 (3)                     | C4       | 0.1320 (2)               | 0.156                  | 19 (5)                  | 1.1853 (2)                                 | 3.32 (2)                          |
| $0^{22} - 0^{4} - 0^{3}$                  |             | 123.0 (3)  | C12 - C13 - C20                    | 99.4 (3)<br>00 2 (3)          | C5       | 0.0558 (2)               | 0.170                  | 75 (4)                  | 1.0034 (2)                                 | 2.90 (2)                          |
| 022 - C4 - C5                             |             | 120.6 (3)  | C5-C14-C13                         | 104.3 (3)                     | C6       | -0.1822 (2)              | 0.1870                 | 56 (5)                  | 0.9991 (2)                                 | 3.41 (2)                          |
| C3-C4-C5                                  |             | 118.0 (3)  | C5-C14-C15                         | 118.0 (3)                     | C7       | -0.2243(3)               | 0.2140                 | 54 (5)<br>56 (6)        | 0.8296 (2)                                 | 3.78 (2)                          |
| C4-C5-C6                                  |             | 108.9 (3)  | C13-C14-C15                        | 109.2 (3)                     | C9       | -0.1964(3)<br>-0.1426(3) | 0.180.                 | 58 (6)                  | 0.0773(2)<br>0.7472(2)                     | 4.10(3)                           |
| C4—C5—C14                                 |             | 118.3 (3)  | O23—C15—C14                        | 121.5 (3)                     | C10      | 0.0742 (2)               | 0.134                  | 13 (5)                  | 0.8581 (1)                                 | 2.85 (2)                          |
| $C_{5} - C_{5} - C_{14}$                  |             | 102.6 (3)  | 023 - 015 - 016                    | 120.6 (4)                     | C11      | 0.1443 (2)               | 0.0844                 | 47 (S)                  | 0.9092 (1)                                 | 3.03 (2)                          |
| C5-C6-C20                                 |             | 100.2 (3)  | C3-C16-C15                         | 124.3 (3)                     | C12      | 0.1843 (2)               | 0.073                  | 78 (4)                  | 1.0911 (2)                                 | 2.98 (2)                          |
| C7-C6-C20                                 |             | 99.4 (3)   | C3-C16-C17                         | 107.1 (3)                     | C13      | 0.2562 (3)               | 0.0274                 | 43 (5)                  | 1.1751 (2)                                 | 4.08 (3)                          |
| C6C7C8                                    |             | 138.8 (4)  | C15-C16-C17                        | 128.1 (3)                     | C14      | 0.4682(3)<br>0.1468(4)   | 0.035                  | 38 (8)                  | 1.2485 (3)                                 | 4.55 (5)                          |
| C6-C7-C12                                 |             | 107.9 (3)  | C16-C17-C18                        | 105.9 (3)                     | C16      | -0.3237(3)               | 0.1448                 | 38 (6)                  | 0.9955 (2)                                 | 4.22 (2)                          |
| $C_{8} - C_{7} - C_{12}$                  |             | 107.2 (3)  | C16 - C17 - C19                    | 98.5 (3)                      | C17      | -0.3051 (3)              | 0.115                  | 79 (5)                  | 0.8653 (3)                                 | 4.32 (3)                          |
| C7 - C8 - C21                             |             | 97.8 (3)   | C1 - C18 - C17                     | 107.6 (4)                     | C18      | -0.4503 (3)              | 0.2212                 | 27 (6)                  | 0.7488 (3)                                 | 4.62 (3)                          |
| C9-C8-C21                                 |             | 97.7 (4)   | C2-C19-C17                         | 92.3 (3)                      | C19      | -0.4254 (3)              | 0.192                  | 72 (7)                  | 0.6190 (3)                                 | 4.93 (3)                          |
| C8-C9-C10                                 |             | 108.3 (4)  | C6-C20-C13                         | 94.7 (3)                      | Tab      | la 1 Calastas            |                        |                         | ana at ang (Å                              | ) fan (II)                        |
| C9-C10-C1                                 | 1           | 107.8 (4)  | C8-C21-C11                         | 92.7 (3)                      | 140      | le 4. <i>Selecieu</i>    | geometr                | ic pare                 | amelers (A,                                | $(\mathbf{n})$ for $(\mathbf{n})$ |
|                                           | 12          | 105.9 (3)  |                                    |                               | 020-0    | 24                       | 1.219 (2)              | C7—                     | C8                                         | 1.561 (2)                         |
|                                           |             |            |                                    |                               | C1-C2    | ;11<br>,                 | 1,214 (2)              | C/—                     | C18                                        | 1.514 (3)                         |
| Compound                                  | l (II)      |            |                                    |                               | C1-C1    | 4                        | 1.331 (3)              | C8—                     | C19                                        | 1.545 (2)                         |
| Crystal data                              | 2           |            |                                    |                               | C2-C3    |                          | 1.528 (2)              | C9—                     | C10                                        | 1.553 (2)                         |
| C II O                                    |             |            | C K and int                        |                               | C2—C1    | 5                        | 1.567 (3)              | C9—                     | C17                                        | 1.503 (2)                         |
| $C_{19}H_{16}O_2$                         |             |            | $Cu \kappa \alpha$ radiation       | on                            | C3C4     | 2                        | 1.453 (2)              | C10-                    | -C11                                       | 1.518 (2)                         |
| $M_r = 2/0.34$                            | 4           |            | $\lambda = 1.5418 \text{ A}$       |                               | C3-C1    | 2                        | 1.338 (2)              | C12-                    | -012                                       | 1.460 (2)                         |
| Monoclinic                                |             |            | Cell parameter                     | s from 25                     | C5-C6    | 5                        | 1.571 (2)              | C12-                    | -C14                                       | 1.536 (3)                         |
| $P_{2_{1}}/c$                             | •           |            | reflections                        |                               | C5C1     | 0                        | 1.555 (2)              | C13-                    | -C15                                       | 1.554 (3)                         |
| a = 6.293 (                               | 1) Å        |            | $\theta = 11 - 34^{\circ}$         | -1                            | C6—C7    |                          | 1.537 (2)              | C16-                    | -C17                                       | 1.328 (3)                         |
| <i>b</i> = 28.348                         | (1) Å       |            | $\mu = 0.63 \text{ mm}^{-1}$       | - 1                           | C6-C1    | .6                       | 1.503 (2)              | C18-                    | -C19                                       | 1.322 (3)                         |
| c = 7.856 (2)                             | 1) Å        |            | <i>T</i> = 295 K                   |                               | C2C1     |                          | 107.8 (2)              | C8—                     | C9-C10                                     | 107.1 (1)                         |
| $\beta = 95.29$ (                         | (1)°        |            | Parallelepiped                     |                               | C1-C2    | 2-C3                     | 105.9 (1)              | C8                      | C9-C17                                     | 109.8 (1)                         |
| V = 1395.5                                | (4) $Å^3$   |            | $0.32 \times 0.20 \times$          | : 0.20 mm                     | C1 - C2  | 2-015                    | 98.8 (2)<br>97 3 (1)   | C10-                    |                                            | 106.5(1)<br>109.4(1)              |
| Z = 4                                     | . ,         |            | Pale green                         |                               | C2-C3    |                          | 128.9 (1)              | C5—                     | C10-C11                                    | 117.70 (9)                        |
| $D_{\rm r} = 1.31  {\rm M}$               | $Mg m^{-3}$ |            |                                    |                               | C2-C3    |                          | 107.0 (1)              | C9—                     | C10—C11                                    | 108.0(1)                          |
|                                           | <b>U</b> .  |            |                                    |                               | C4—C3    | -C12                     | 124.0(1)               | 021-                    | -C11-C10                                   | 120.8 (1)                         |
| Data collect                              | tion        |            |                                    |                               | 0200     | 24—C3<br>24—C5           | 121.8(1)               | 021-                    | -C11-C12                                   | 121.1(1)                          |
| Enraf-Noni                                | us diffra   | ctometer   | $R_{\rm int} = 0.01$               |                               | C3-C4    |                          | 120.5(1)<br>117.6(1)   | C10-                    | -C11C12                                    | 123.7 (1)                         |
| $\omega - 2\theta$ scane                  |             |            | $\theta_{\rm max} = 70^{\circ}$    |                               | C4—C5    |                          | 108.7 (1)              | C3-                     | C12-C13                                    | 107.6 (1)                         |
| Absorption                                | correctio   | nn.        | $h = 0 \rightarrow 8$              |                               | C4—C5    |                          | 118.0 (1)              | C11-                    | -C12-C13                                   | 128.4 (1)                         |
| none                                      | concent     |            | $k = 0 \rightarrow 32$             |                               | C6-C5    |                          | 108.9 (1)              | C12-                    | -C13-C14                                   | 105.7 (1)                         |
| 3038 mean                                 | red refle   | ections    | $l = -10 \rightarrow 10$           | )                             | C5-C6    |                          | 105.0(1)               | C12-                    | -013-015                                   | 97.9(1)<br>98.4(1)                |
| 2406 index                                | andent +    | aflections | 3 standard refl                    | ections                       | C7—C6    | —C16                     | 109.3 (1)              | C1                      | C14—C13                                    | 107.7 (2)                         |
| 2400 muept                                | and roff-   | ations     | frequency 1                        | 20 min                        | C6—C7    | ′—C8                     | 109.5 (1)              | C2—                     | C15-C13                                    | 93.0(1)                           |
| 2143 UDServ                               |             | CHOILS     | intensity vot                      | iation: <5%                   | C6C7     | /—C18                    | 120.3 (1)              | C6—                     | C16-C17                                    | 114.9 (1)                         |
| [1 > 2.50]                                | (I)         |            | mensity val                        | 1411011, \J/0                 | C8C7     |                          | 85.6 (1)               | C9                      | C17—C16                                    | 114.5(1)                          |

| C7—C8—C9  | 109.3 (1) | C7-C18-C19 | 94.2 (2) |
|-----------|-----------|------------|----------|
| C7—C8—C19 | 85.4 (1)  | C8-C19-C18 | 94.8 (2) |
| C9-C8-C19 | 119.2 (2) |            |          |

Structure solution and refinement were performed using the *SDP* (Frenz, 1978) program package on a VAXII/730 computer. Molecular structures were plotted using the *PLUTO* program (Motherwell & Clegg, 1978).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71521 (28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1052]

#### References

- Cookson, R. C., Hill, R. R. & Hudec, J. (1964). J. Chem. Soc. pp. 3043-3062.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft Univ. Press.
- Mehta, G., Padma, S., Karra, S. R., Gopidas, K. R., Cyr, D. R., Das, P. K. & George, M. V. (1989). J. Org. Chem. 4, 1342–1346.
- Mehta, G., Padma, S., Pattabhi, V., Pramanik, A. & Chandrasekhar, J. (1990). J. Am. Chem. Soc. 112, 2942–2949.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Zachariasen, W., H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1994). C50, 597-601

# 2,2'-Di-O-acetyl-3,6;3',6'-dianhydro-4,4'-dideoxy-α,α-trehalose

C. K. LEE AND L. L. KOH

Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 0511

(Received 17 March 1993; accepted 10 August 1993)

# Abstract

The structure of 2,2'-di-O-acetyl-3,6;3',6'-dianhydro-4,4'-dideoxy- $\alpha$ , $\alpha$ -trehalose (2-O-acetyl-3,6-anhydro-4-deoxy- $\alpha$ -D-xylo-hexopyranoside), C<sub>16</sub>H<sub>22</sub>O<sub>9</sub>, is described. The molecule has approximate twofold symmetry through O(1). Both pyranoid rings have distorted <sup>1</sup>C<sub>4</sub> chair conformations and the five-membered anhydro rings have distorted <sup>4</sup>E conformations. The structure of the compound appears to show the absence of a sweet AH,B gluco-

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved phore, which would explain the absence of sweetness in the unsubstituted derivative.

#### Comment

The Shallenberger AH.B theory of sweetness (Shallenberger & Acree, 1967) suggests that the fundamental unit of sweetness is an AH, B system, where A and B are electronegative atoms in suitable geometric proximity. The Kier extension to the AH, B concept (Kier, 1972) is that a third hydrophilic ( $\gamma$ ) binding site, if present, will increase the intensity of the sweet taste. The ideal molecule for taste studies in sugars is probably  $\alpha, \alpha$ -trehalose. It contains two chemically equivalent glucopyranose residues in the most stable  ${}^{4}C_{1}$  conformation, linked glycosidically through their reducing (anomeric) C atoms. Stability is high in the sugar and its derivatives because all the hydroxyl substituents are equatorially disposed. Because the interatomic distances are of great importance in determining sweetness, we have undertaken the X-ray crystal diffraction study of  $\alpha, \alpha$ -trehalose derivatives.

A SHELXTL-Plus (Sheldrick, 1990) XP plot of 2,2'-di-O-acetyl-3,6;3',6'-dianhydro-4,4'-dideoxy- $\alpha,\alpha$ -trehalose (Birch, Lee & Richardson, 1974) (1) with the atomic numbering scheme is shown in Fig. 1, and the molecular packing in the crystal is shown in Fig. 2. Like  $\alpha,\alpha$ -trehalose, the two glucopyranosyl residues of (1) have approximate  $C_2$  symmetry but the structural differences between the two residues are much smaller. Differences are found in the torsion angles about the glycosidic O atom, especially those involving C(2) and C(2') (Table 3), and in the conformation of the C(2) and C(2') acetyl groups.



Bond lengths, bond angles and selected torsion angles are given in Tables 2 and 3. Bond lengths and angles agree well with those of methyl 3.6-anhydro- $\alpha$ -D-hexopyranosides (Lindberg, Lindberg & Svensson, 1973; Campbell & Harding, 1972), and most other pyranose sugars (Berman, Chu & Jeffrey, 1967). The O(1)—C(1) and O(1)—C(1') bond lengths show systematic trends similar to those observed in other  $\alpha$ -pyranose sugars (Berman, Chu & Jeffrey, 1967) but are shorter than those in  $\alpha$ ,  $\alpha$ -trehalose (Brown, Rohrer, Berking, Beevers, Gould & Simpson, 1972; Taga, Senma & Osaki, 1972; Jeffrey & Nanni, 1985) and its 3,3-dideoxy derivative (Lee &